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(57) ABSTRACT

A method for real-time fusion of a 2D cardiac ultrasound
image with a 2D cardiac fluoroscopic image includes acquir-
ing real time synchronized US and fluoroscopic images,
detecting a surface contour of an aortic valve in the 2D cardiac
ultrasound (US) image relative to an US probe, detecting a
pose of the US probe in the 2D cardiac fluoroscopic image,
and using pose parameters of the US probe to transform the
surface contour of the aortic valve from the 2D cardiac US
image to the 2D cardiac fluoroscopic image.
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Acquire synchronized ultrasound (US)
and fluoroscopic images in real time.

]

Estimate the anatomy relative to the
probe using the angulation of the US fan.

|}

Estimate the 6 DoF pose of the
probe from the fluoroscopic image.

¥

Project and visualize the detected anatorny from
the US image into the fluoroscopic image plane.
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Acquire synchronized ultrasound (US)
and fluoroscopic images in real time.

Estimate the anatomy relative to the
probe using the angulation of the US fan.

Estimate the 6 DoF pose of the
probe from the flucroscopic image.

!

Project and visualize the detected anatomy from
the US image into the fluoroscopic image plane.

FIG. 2
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Workflow for Optimal Ultrasound Probe Placement |
l Short Axis View of Valve l Visualization in Fluoroscopy |
US Probe
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1, pre-operative data (CT) 1, intra-cperative data (3D C-am CT)

FIG. 8

FIG. 9
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anchor anatomy A, in CT
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FIG. 12

Table

Avarage Error
Data ufmn) vimm) Yaw{deg)

Synthatic 141 2238 2603.2)

Phantom 15{14) 28(1.3) 30034
in Vivg 22554 3708.0) £.6(15.7)

FIG. 14
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Table 2

Eror
Data X {mm) Y (mm) Z{mm) Rollfdeg)  Pitch{deg)  Yaw(deg)

Synthefic  0.82079) 087(21)  B40(139) 420105  4600)  26(32)
Phantom  11(08)  07(06)  190416) 115(120) 11898  30(34)

FIG. 16
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180 180

FIG. 18

201 FiG. 20

Table Il
Mean | STD | Median
no fransformation - 1 ideniity matrix fmm] || 4975 | 37.90 | 5645
figid - registration using Ml fmm] |l 2808 | 1223 + N2
anrofation- A and A, fomlf 89 281 591
our method - no prior fam] | 5.01 180 1 487
our method - prior fmm] |} 404} D30 1 418

FiG. 19



U.S. Patent Feb. 2, 2016 Sheet 11 of 14 US 9,247,880 B2

211
s

Devices

Signal
Source

FIG. 21



U.S. Patent Feb. 2, 2016 Sheet 12 of 14 US 9,247,880 B2

/221

Divide the image patch into sub-regions.

22

Extract dominant gradient
orientation from each region.

v o

Discretize orientations into N orientation bins,
where each sub-region is represented as an N-bit
byte which corresponds to the N orientation bins.

! 4

Set bit to 1 if the orientation exists
in the sub-region and O if not.

! 25

Match templates by comparing each sub-region
and counting how many times a feature exists in
the template and the input image.

FIG. 22
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Assign each mesh vertex as a positive sample.

{ 2%

Assign random points within a threshold
distance as negative samples.

! 233

Reject as positive examples those vertices
for which the feature response is low.

v 2

Train the classifier on the remaining samples.

FIG. 23

231
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L4
Assign each vertex as a positive sample.
A2
Assign random points within a threshold
distance as negative samples.
243

Reject as positive examples those vertices
for which the feature response is low.

! 45

Estimate ground-truth mapping ¥y based on the 3 aortic
valve hinges and the 3 aortic valve commissures.

Transform every intra-operative model of the pre-operative anchor
anatomy Ty into the pre-operative image I, using T/ = 04 T; and
the variance of the point-wise distance | T7-Ty | .

FIG. 24
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1
IMAGE FUSION FOR INTERVENTIONAL
GUIDANCE

CROSS REFERENCE TO RELATED UNITED
STATES APPLICATIONS

This application claims priority from “Real-Time TAVI
Navigation: Fusing Anatomy from 2D US with Fluoros-
copy”, U.S. Provisional Application No. 61/602,107 of
Mountney, et al., filed Feb. 23, 2012, “Robust Model-based
Fusion of Pre- and Intra-Operative Images by Exploiting Data
Uncertainties”, U.S. Provisional Application No. 61/605,566
of Grbic, et al., filed Mar. 1, 2012, and “Ultrasound and
Fluoroscopic images Fusion by Autonomous US Probe
Detection”, U.S. Provisional Application No. 61/605,573 of
Mountney, et al., filed Mar. 1, 2012, the contents of all of
which are herein incorporated by reference in their entireties.

TECHNICAL FIELD

This disclosure is directed to methods for real-time fusing
ot 2D and 3D images with 2D fluoroscopic images for inter-
ventional guidance.

DISCUSSION OF THE RELATED ART

Fluoroscopy guided cardiac interventions such as endovas-
cular stenting, atrial ablation, closure of atrial/ventricular
septal defects and transcatheter valve repair or replacement
are proliferating. In comparison to conventional open-heart
surgeries, these procedures tend to be less invasive, reduce
procedural morbidity, mortality and interventional cost while
accelerating patient recovery. For inoperable or high-risk
patients, minimal invasive cardiac intervention is the only
treatment option. However, navigating a catheter inside a
patient is challenging, and without direct access or view to the
affected anatomy, advanced imaging is required to secure a
safe and effective execution of the procedure.

There are two established modalities currently used in
operating rooms to provide real-time intra-operative images:
X-ray fluoroscopy (Fluoro) and Transesophageal Echocar-
diography (TEE). X-ray fluoroscopy is used to visualize the
catheter; however, this imaging modality does not capture
soft tissue structure. Soft tissue is visualized using a second
imaging modality, e.g. Transesophageal Echocardiography
(TEE), or contrast agent combined with rapid pacing. Never-
theless, the splendid complementary nature of TEE and
Fluoro is barely exploited in today’s practice where the real-
time acquisitions are not synchronized, and images are visu-
alized separately and in misaligned coordinate systems.

On the other hand, overlays of 3D anatomical structures
based on pre-operative data can provide valuable information
for intervention navigation and guidance when displayed on
2D live fluoroscopy. Valuable 3D information is already rou-
tinely acquired for diagnostic and planning purposes by
means of Computed Tomography, Magnetic Resonance
Imaging (MRI) or Echocardiography. However, direct 3D to
2D image registration is challenge to solve, especially within
the intra-operative setup that does not allow for user interac-
tion or time consuming processing.

In a procedure such as Transcatheter Aortic Valve Implan-
tation (TAVI), visualization of soft tissue is critical to ensure
the correct placement/alignment of the implant. TEE pro-
vides useful navigation data; however, it is normal to perform
rotational angiography with rapid pacing or a contrast agent
to obtain models of the soft tissue structures. Overlaying
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rotational angiography on a fluoroscopic image enables cor-
rect alignment of the device using fluoroscopy.

However, clinical guidelines limit the duration and fre-
quency of rapid pacing and the volume of contrast agent that
can be administered to a patient, due to negative effects on the
heart and kidneys. An alternative approach is to visualize soft
tissue information from TEE in the fluoroscopic image. This
will facilitate navigation of the implant device in fluoroscopy.

The fusion of fluoroscopic and ultrasound (US) images
into a single space is challenging. Fluoroscopy is a projective
imaging modality and US is 2D or 3D. These modalities are
not intuitively visualized in the same space. In addition care
must be taken to visualize meaningful information and to not
occlude important data.

The fusion of Fluoro and TEE can be accomplished using
either hardware or image-based methods. Hardware based
approaches attach additional devices to the ultrasound probe,
such as electromagnetic or mechanical trackers and align the
device and Fluoro coordinates systems through calibration.
These devices track the position and orientation of the probe
in a coordinate system defined by the tracking device.
Through a calibration process, the transformation between
the ultrasound image and the tracked point on the probe is
estimated. This transformation is rigid and does not change
during the procedure. A second calibration procedure esti-
mates the transformation between the tracking device coor-
dinate system and the X-ray fluoroscopy device. Concatenat-
ing these transformations registers the ultrasound image into
the X-ray fluoroscopy image. It is assumed that the ultrasound
image is not rotated or zoomed.

The introduction of additional hardware into the already
crowded operating theatre is not desirable, as it can require
time consuming configuration and may be disruptive to the
workflow. In additional, electromagnetic tracks can suffer
from noise and interference leading to inaccuracies.

Image based methods attempt to use the appearance of the
TEE probe in the Fluoro image to estimate the pose of the
probe in the fluoroscopic coordinate system. Image based
methods are attractive because they do not require the intro-
duction of additional equipment into the theatre which may
disrupt clinical workflow. Image based pose estimation is
well studied and may be considered solved when the corre-
spondence between 2D image points and a 3D model are
known. Unfortunately, the appearance of the TEE probe in the
Fluoro image makes establishing the correspondence chal-
lenging. The probe’s appearance lacks texture or clear feature
points and can be homogenous under low dose or close to
dense tissue.

C-arm CT is emerging as anovel imaging modality that can
acquire 3D CT-like volumes directly in the operating room, in
the same coordinate space as the 2D live fluoroscopy images,
which overcomes the need for 2D/3D registration. Some
methods work directly on the 3D C-arm CT images to extract
patient specific models and overlays for procedure guidance,
eliminating the need for pre- and intra-operative image fusion
completely. However, performing high-quality, contrasted,
and motion compensated (using rapid-pacing) C-arm CT
images is not feasible for all patients. Instead, a much simpler
protocol, which acquires non-contrasted, non-ECG-gated
C-arm CT volumes, can be performed to serve as a bridge
between 3D pre-operative images and 2D live fluoroscopy.
Multi-modal 3D-3D registration algorithms can be utilized to
align the pre-operative image with the C-arm CT volume.
FIG. 1 depicts several fused images of an intra-operative 3D
C-arm CT overlaid with pre-operative model of the aortic
valve extracted from CT. The CT is indicated by reference
number 11 while an overlaid aligned native rotational angiog-
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raphy is indicated by reference number 12. However, existing
methods are computationally expensive, and without the
appropriate guidance of a shape prior are unlikely to converge
to local minima.

SUMMARY

Exemplary embodiments of the invention as described
herein generally include methods for fusing 3D pre-operative
anatomical information with live 2D intra-operative fluoros-
copy via non-contrasted 3D C-arm CT. Embodiments employ
robust learning-based methods to automatically extract
patient-specific models of both target and anchor anatomies
from CT. Anchor anatomies have correspondences in the
pre-operative and intra-operative images while target anato-
mies are not visible in the intra-operative image but are essen-
tial to the procedure. A sparse matching approach is
employed to align the pre-operative anchor anatomies to the
intra-operative setting. Data and model uncertainties are
learned and exploited during the matching process. A method
according to an embodiment of the invention can cope with
artifacts in the intra-operative images, partially visible mod-
els and does not require contrast agent in the intra-operative
image.

Further exemplary embodiments of the invention as
described herein generally include methods for a robust and
fast learning-based method for the automated detection and
visualization of the TEE probe pose, with six degrees of
freedom, from Fluoro images. Embodiments employ a proba-
bilistic model-based approach to estimate candidates for the
in-plane probe position, orientation and scale parameters, and
digitally reconstructed radiography (DRR) in combination
with a fast matching based on binary template representation
for the estimation of out-plane rotation parameters (pitch and
roll). An approach according to an embodiment of the inven-
tion is an image only approach which requires no additional
hardware to be incorporated into the operating theatre, does
not require manual initialization, is robust over the entire pose
parameter space, and is independent of specific TEE probe
design/manufacturer. The 6 degree-of-freedom (DoF) pose of
the probe can be detected from 2D fluoroscopy enabling the
ultrasound (US) fan to be visualized in the same coordinate
system as the fluoroscopy.

Further exemplary embodiments of the invention as
described herein generally include methods for visualizing
high contrast information extracted from the US of anatomi-
cally significant structures, specifically the aortic root and
leaflets, to facilitate implant guidance, and the pose of the US
probe in the fluoroscopic image. Embodiments can meet real
time requirements by detecting critical soft tissue anatomy in
2D US images.

According to an aspect of the invention, there is provided a
method for real-time fusion of a 2D cardiac ultrasound image
with a 2D cardiac fluoroscopic image, including detecting a
surface contour of an aortic valve in the 2D cardiac ultrasound
(US) image relative to an US probe, detecting a pose of the US
probe in the 2D cardiac fluoroscopic image, and using pose
parameters of the US probe to transform the surface contour
of the aortic valve from the 2D cardiac US image to the 2D
cardiac fluoroscopic image.

According to a further aspect of the invention, detecting the
surface contour of the aortic valve includes modeling a global
location of the aortic valve by a bounding box with a specified
center and orientation, where the global location includes a
center position, an orientation and a scale of the aortic valve,
locating anatomical landmarks of the aortic valve, including
2 landmarks on the aortic valve annulus and 2 landmarks on
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the aortic valve commissure plane, and modeling the aortic
valve borders with a first contour and a second contour, the
first and seconds contours being constrained by the aortic
valve annulus landmarks and the aortic valve commissure
plane landmarks.

According to a further aspect of the invention, the method
includes detecting the global position, anatomical landmarks,
and first and second contours are using marginal space learn-
ing with a hierarchical approach, where detectors are succes-
sively trained using probabilistic boosting trees.

According to a further aspect of the invention, the method
includes finding an optimal imaging angle for the US probe
by rotating the US probe about its axis, and detecting an
angulation of an US fan with respect to the aortic root, and
selecting a probe orientation that maximizes the angulation of
the US fan with respect to the aortic root as the optimal
imaging angle.

According to a further aspect of the invention, the method
includes inserting the US image into the fluoroscopic image.

According to a further aspect of the invention, detecting a
pose of the US probe in the 2D cardiac fluoroscopic image
includes determining a position (u,v), orientation (6y), and
size (s) of an ultrasound (US) probe in a fluoroscopic image,
determining a roll and pitch of the US probe in the fluoro-
scopic image, where the position, orientation, size, roll and
pitch comprise pose parameters of the probe, and using the
probe pose parameters to transform points in the 2D cardiac
ultrasound image into the 2D cardiac fluoroscopic image,
where the 2D cardiac ultrasound image is visualized in the 2D
cardiac fluoroscopic image.

According to a further aspect of the invention, determining
the position, orientation, and size of the US probe in the
fluoroscopic image comprises sequentially applying a classi-
fier for each of the position, orientation, and size, respec-
tively, where each classifier is trained using a probabilistic
boosting tree.

According to a further aspect of the invention, each of the
classifiers is trained using Haar-like features.

According to a further aspect of the invention, determining
the position of the US probe comprises applying a steerable
filter to the 2D fluoroscopic image to identify regions of high
contrast which are likely to contain the US probe.

According to a further aspect of the invention, determining
the size of the US probe comprises detecting two points where
a tip of the probe meets a shaft of the probe, where the
orientation and position of the US probe are used to constrain
a search area for the size detector.

According to a further aspect of the invention, determining
the roll and pitch of the US probe in the fluoroscopic image
comprises matching an image patch of the fluoroscopic image
containing the US probe with each of a plurality of image
templates, where each image template is associated with a
particular combination of roll and pitch values, where the
pitch and roll of a template that best matches the image patch
are selected as the roll and pitch of the US probe.

According to another aspect of the invention, there is pro-
vided a method of transforming target structure anatomies in
a pre-operative image 1, into an intra-operative image I,
including determining a transformation ® aligns a target
structure T, and an anchor structure A, in the pre-operative
image 12 into a corresponding target structure T, and anchor
structure A, in the intra-operative image I, by finding a trans-
formation & that maximizes a functional log(P(®II,, A,))
using an expectation-maximization approach, where the tar-
get structure T, is not visible in the intra-operative image.

According to a further aspect of the invention, the trans-
formation @ is a rigid transformation, where an initial trans-
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formation ®° is approximated as a translation, where ®°
represents a translation between a barycenter a, of the anchor
anatomy A, in the pre-operative image I, and a detected
barycenter a, of the anchor anatomy A in the intra-operative
image I,.

According to a further aspect of the invention, the initial
transformation ®° is determined by a position detector
trained by a probabilistic boosting tree classifier and Haar
features on the barycenter a, of the anchor anatomy A, in the
intra-operative image .

According to a further aspect of the invention, the pericar-
dium is used as the anchor anatomy A, and A, and the aortic
valve is used as the target anatomy T, and T,.

According to a further aspect of the invention, finding a
transformation @ that maximizes a functional log(P
(®I1,,A,)) includes generating K sample @, point sets (X, X5,
X3, - - . , Xg) from the pre-operative anchor anatomy A ,, where
each point set comprises N points and each sample is repre-
sented as an isotropic 6D Gaussian distribution ®,=N(u,,X,),
2,=0,1, where I is an identity matrix and o, is a one dimen-
sional variable calculated as a kernel function from a prob-
ability map F(I) evaluated at the point locations y, , i=1, . . .,
K, j=1, . . ., N, transforming the point sets ®/ into the
intra-operative image I, locations y*=d(x,), i=1, . . ., K,
according to an appearance of the intra-operative image I,
assigning each point y*; , j=1, ..., N from the point set to a
new locationy, , j=1, ..., N, based on a local appearance of
the intra-operative image I, approximating final parameters
of each sample @/ by an isotropic Gaussian distribution,
where a mean p is computed from a least squares solution
between the point set ®,” in the pre-operative I, and the
updated point set (y;, V5, V35 - - - » Y&) 10 the intra-operative
image I, by minimizing the mapping error function

1 N
e = ﬁz (1% (x;,5) = il
=1
and determining an updated global transformation ®™* from
&' = argmax(® | )
[

based on an estimated mixture model

@0
i=1

of the K transformation samples @/, i=1, ..., K.
According to a further aspect of the invention,

O = argmax(® | 9)
?

is estimated using a mean shift algorithm.

According to a further aspect of the invention, the method
includes deriving the probability map F(I,) from the intra-
operative image I, by evaluating a boosting classifier trained
using Haar features and surface annotations of the anchor
anatomy A, in the intra-operative image I, where each vertex
of' a model of the intra-operative image I, is assigned as a
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positive sample and random points within a threshold dis-
tance are used as negative samples, and those vertices for
which a feature response is low are rejected as positive
examples.

According to a further aspect of the invention, minimizing
the mapping error further comprises estimating a prior prob-
ability for each vertex of a model of pre-operative image 1, by
assigning each vertex of a model of the pre-operative image 1,
as a positive sample and using random points within a thresh-
old distance as negative samples, rejecting those vertices for
which a feature response is low as positive examples, esti-
mating a ground-truth mapping @ ,based on hinges and com-
missures of the aortic valve, and transforming each intra-
operative model of the pre-operative anchor anatomy T, into
the pre-operative image I, using T,*=® T, and the variance
of a point-wise distance |[T,*-T/]|.

According to another aspect of the invention, there is pro-
vided a non-transitory program storage device readable by a
computer, tangibly embodying a program of instructions
executed by the computer to perform the method steps for
transforming target structure anatomies in a pre-operative
image I, into an intra-operative image ;.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts several fused images of an intra-operative
3D C-arm CT overlaid with pre-operative model of the aortic
valve extracted from CT, according to an embodiment of the
invention.

FIG. 2 is flowchart of a method for real time image fusion
according to an embodiment of the invention.

FIGS. 3(a)-(b) depict a 2D ultrasound image of the aortic
valve and a bounding box showing the global position of the
aortic valve according to an embodiment of the invention.

FIGS. 4(a)-(b) depict a landmark model ofthe aortic valve,
and a complete model of the aortic valve including the con-
tours constrained by the bounding box and the landmarks
according to an embodiment of the invention.

FIG. 5 is a schematic visualization of an optimization
process according to an embodiment of the invention.

FIG. 6 depicts an example of a picture-in-picture visual-
ization, according to an embodiment of the invention,

FIG. 7 shows a framework for determining in-plane and
out-plane parameters, according to an embodiment of the
invention.

FIG. 8 illustrates a formulation of fusing a pre-operative
CT image into an intra-operative 3D C-arm CT image,
according to an embodiment of the invention.

FIGS. 9(a)-(b) illustrates a model estimation derived from
a pre-operative CT using discriminative machine learning
techniques for the aortic valve and pericardium surface
model, according to an embodiment of the invention.

FIG. 10 shows the output of the boosting classifier
response on the intra-operative 3D C-arm CT data trained to
delineate certain boundary regions of the anchor anatomy,
according to an embodiment of the invention.

FIG. 11 illustrates one iteration of an EM approach accord-
ing to an embodiment of the invention.

FIG. 12 illustrates prior weights indicating the significance
of each vertex for an accurate mapping with respect to the
aortic valve according to an embodiment of the invention.

FIG. 13 is a table showing quantitative validation of the
in-plane position and orientation parameters for three
datasets, according to an embodiment of the invention.

FIGS. 14(a)-(d) are fluoroscopic images illustrating probe
detection and the estimation of in-plane parameters from in
vivo images, according to an embodiment of the invention.



US 9,247,880 B2

7

FIG. 15 plots the (Or, Op) error in mm over the search space
in degrees, according to an embodiment of the invention.

FIG. 16 is a table of the quantitative validation results for
TEE probe detection, according to an embodiment of the
invention.

FIG. 17 depicts detection examples of the probe pose in in
vivo images, according to an embodiment of the invention.

FIGS. 18(a)-(c) illustrate an anatomical mitral valve model
detected in 3D TEE and visualized in Fluoro, according to an
embodiment of the invention.

FIG. 19 is a table of the mean, median and standard devia-
tions of various transformations, according to an embodiment
of the invention.

FIG. 20 shows several examples of fused volumes with a
mapped aortic valve model detected in a pre-operative CT
image mapped into a non-contrasted intra-operative 3D
C-arm CT image using a sparse matching method with prior
sampling according to an embodiment of the invention.

FIG. 21 is a block diagram of an exemplary computer
system for fusing images for interventional guidance, accord-
ing to an embodiment of the invention.

FIG. 22 is a flowchart of a method of matching an image
patch with the image templates in the template library,
according to an embodiment of the invention.

FIG. 23 is a flowchart of a method of deriving the prob-
ability map F(I,) from the intra-operative image I, , according
to an embodiment of the invention.

FIG. 24 is a flowchart of a method of estimating a prior
probability for each mesh point of the pre-operative image
models, according to an embodiment of the invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Exemplary embodiments of the invention as described
herein generally include systems and methods for fusing
images for interventional guidance. Accordingly, while the
invention is susceptible to various modifications and alterna-
tive forms, specific embodiments thereofare shown by way of
example in the drawings and will herein be described in
detail. It should be understood, however, that there is no intent
to limit the invention to the particular forms disclosed, but on
the contrary, the invention is to cover all modifications,
equivalents, and alternatives falling within the spirit and
scope of the invention.

As used herein, the term “image” refers to multi-dimen-
sional data composed of discrete image elements (e.g., pixels
for 2-dimensional images and voxels for 3-dimensional
images). The image may be, for example, a medical image of
a subject collected by computer tomography, magnetic reso-
nance imaging, ultrasound, or any other medical imaging
system known to one of skill in the art. The image may also be
provided from non-medical contexts, such as, for example,
remote sensing systems, electron microscopy, etc. Although
an image can be thought of as a function from R®> to R or R,
the methods of the inventions are not limited to such images,
and can be applied to images of any dimension, e.g., a 2-di-
mensional picture or a 3-dimensional volume. For a 2- or
3-dimensional image, the domain of the image is typically a
2- or 3-dimensional rectangular array, wherein each pixel or
voxel can be addressed with reference to a set of 2 or 3
mutually orthogonal axes. The terms “digital” and “digitized”
as used herein will refer to images or volumes, as appropriate,
in a digital or digitized format acquired via a digital acquisi-
tion system or via conversion from an analog image.
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Methods

Methods according to an embodiment of the invention can
extract critical soft tissue information from 2D TEE in real
time. A flow chart of a method for real time image fusion
according to an embodiment of the invention is shown in FIG.
2. In a first step 20 real time synchronized US and fluoro-
scopic images are acquired. The 2D US image is processed to
detect the aortic anatomy. The anatomy includes but is not
limited to the aortic root and the leaflets. To visualize the
detected anatomy in the fluoroscopic image, at step 21 the
anatomy is estimated relative to the probe using the angula-
tion of the US fan, and at step 22 the 6 DoF pose of the probe
is estimated from the fluoroscopic image. Given this infor-
mation and the intrinsic calibration parameters of the fluoro-
scopic device, the detected anatomy can be projected into the
fluoroscopic image plane at step 23 and visualized. FIG. 3(a)
depicts a 2D US image of the aortic valve.

Embodiments of the invention can detect the surface con-
tour of the aortic valve in 2D (TEE) ultrasound using a multi-
level hierarchical approach. On a coarsest layer, the location,
orientation and scale are modeled as a bounding box 0, as
shown in FIG. 3(b), where 6={c,, ¢, @), where ¢, c, repre-
sent the x- and y-coordinates of the bounding box center and
athe rotation. The size or scale of the bounding box is learned
from the modeling.

A second modeling layer according to an embodiment of
the invention includes four landmarks (m,,, m,,, m.;, m,)
where m,; and m, are located on the aortic valve annulus
and m, and m,, on the commissure plane. FIG. 4(a) depicts
alandmark model ofthe aortic valve, according to an embodi-
ment of the invention. A third modeling layer according to an
embodiment of the invention includes two contours R1 and
R2 which are constrained by the bounding box, annulus and
commissures landmarks. FIG. 4(b) depicts a complete model
of' the aortic valve including the contours R1 and R2, accord-
ing to an embodiment of the invention

According to embodiments of the invention, patient-spe-
cific parameters of the aortic valve model can be estimated
from the 2D or 2x2D (X-Plane) ultrasound images using
robust learning-based algorithms that use hierarchical
approaches within a Marginal Space Learning (MSL)
approach. Detectors are successively trained using the Proba-
bilistic Boosting Tree (PBT) with Haar and Steerable fea-
tures, and are subsequently applied to estimate the global
location 6 followed by anatomical landmarks (m,,, m,,
mg,, Mm,) and surface structures R1 and R2.

A model according to an embodiment of the invention is
estimated in the ultrasound image space and can therefore be
transformed into the fluoroscopic image space using the
approach described above.

An approach to US probe pose estimation according to an
embodiment of the invention first detects the probe in the
fluoroscopic image with three degrees of freedom, two trans-
lational degrees and one rotation degree, in the image plane.
According to an embodiment of the invention, the probe can
be detected using Marginal Space [earning and Probabilistic
Boosting trees. A classifier according to an embodiment of
the invention can be trained on manually labeled data, and can
extract features which distinguish positively labeled data
from negatively labeled data. Embodiments use non-maximal
suppression to reduce the number of candidates, and boot
strapping to initialize a detection and tracking process
according to an embodiment of the invention.

A pose estimation according to an embodiment of the
invention has 6 DoF. According to an embodiment of the
invention, the remaining 3 degrees of freedom can be esti-
mated using a second classifier. The second classifier can be
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trained to estimate the Z translation (depth), pitch and roll of
the probe. The classifier is trained on synthetically generated
training data where the ground truth position of the probe is
known. According to an embodiment of the invention, a filter
such as an Extended Kalman or a Particle filter can be used to
exploit temporal information between frames, which reduces
the search space, enabling the pose of the probe to be pre-
dicted.

A new clinical workflow according to an embodiment of
the invention can determine an optimal US orientation for
visualization of the aortic root. Detection of the aortic root in
2D US is beneficial for real time computation, however, the
detected segments are only a partial representation of the root.
To visualize the whole root structure, an operator can move
the US device and determine an optimal imaging plane for
visualization of the aortic structures in fluoroscopy. An opti-
mal imaging angle is one which visualizes a widest point of
the aortic root and thus facilitates implantation of a prosthetic
device.

FIG. 5 is a schematic visualization of an optimization
process according to an embodiment of the invention. This
figure represents a simple case in which the US probe is
rotated around its axis, changing the angulations ofthe US fan
with respect to the aortic root. Three steps of a continuous
motion are shown in FIG. 5. The user starts with an initial
visualization in fluoroscopy 51 of the aortic root represented
by two lines. At this point it would not be clear to the operator
if this is an optimal visualization, i.e., the widest point of the
aortic root. By rotating the probe around the axis, as shown on
the left side of FIG. 5, the operator can see the lines move
further apart 52 as an optimal visualization plane is
approached. These lines will then move back together 53 after
passing the optimum visualization plane. Through guided
navigation and exploration the operator can determine the
optimal imaging plane.

It should be noted that the aortic anatomy may not always
be visualized as straight or parallel lines. The visualization is
dependent on the 6 DoF orientation of the US probe and the
shape of the anatomy. This does not affect the effectiveness of
the navigation or the usefulness of the visualization to assist
in determining an optimal orientation of the US probe, as it is
still possible to visualize the widest part of the aortic root.

According to an embodiment of the invention, a picture-
in-picture visualization can enable a physician to verify the
correctness of the detected anatomy, and to verify that models
visualized in the fluoro correspond to that in the TEE. FIG. 6
depicts an example of a picture-in-picture visualization,
according to an embodiment of the invention, with US picture
61 embedded in the upper right corner of the image. FIG. 6
also depicts the aortic root 62 and the aortic valve 63.

A method of fusing 2D TEE images with 2D fluoroscopic
images canreduce the need for rapid pacing, reduce the use of
a contrast agent, decrease procedure times, guide an ultra-
sound operator to find an optimal imaging plane, and provide
a clear visualization of anatomy, by overlaying a TEE image
on a fluoroscopic image.

According to another embodiment of the invention, infor-
mation from a TEE volume can be visualized in a fluoro-
scopic image by aligning the TEE and C-arm fluoroscopic
coordinate systems. A point Q™% in an ultrasound volume
can be visualized in a fluoroscopic image at coordinate
(u, v)=Q"™°" using a following transformation, according to
an embodiment of the invention:

Ortuoro=Pprojectiont: TR RoR1EE WQTEE+ Trze W)

ey
where Pp,, 00, 18 @ projection matrix, R, and T,

are the transformations from a detector to a world coordinate
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system, and R, are the angulations of the C-arm,
and R,,.” and T,,,” are the rotation and position of the
TEE probe in a world coordinate system such
that RTEEW:Ra‘lRy‘lRXZ‘lRTEEF “roand Topg”
Ra"lRY"lez"lRTEEF o The TEE volume and fluoroscopic
image can be aligned if position T,,." "“*"°=(x,y,z) and ori-
entation R ;.7 ““"°=(0r,0p,0y) of the TEE probe in the Fluo-
roscopic detector TEE coordinates.

An approach according to an embodiment of the invention
separates the pose parameters into in-plane (X, y, z) and (0y)
parameters and out-plane (0r, Op) parameters. By marginal-
izing the estimation, embodiments can efficiently estimate
in-plane parameters directly from the Fluoro images, while
being invariant against the out-plane parameters that are more
challenging to determine. A framework according to an
embodiment of the invention for determining in-plane and
out-plane parameters is illustrated in FIG. 7.

According to an embodiment of the invention, the in-plane
parameters can be computed from the position (u, v), size (s)
and orientation (8y), given a projection transformation P of
the calibration information of the fluoroscopic device and the
physical dimensions of the TEE probe. Embodiments of the
invention can detect the in-plane parameters (u, v), (s), (6y)
from a Fluoro image using discriminative learning methods
described below.

According to an embodiment of the invention, to estimate
the in-plane parameters, discriminative learning methods can
be used to train a classifier that detects the position (u, v), the
orientation (0y), and the size (s) of the TEE probe in the
Fluoro image. Three classifiers can be trained using manually
annotated Fluoro data. According to an embodiment of the
invention, the classifiers are trained and sequentially applied
so that first, candidates 71a are detected for (u, v) at step 71,
then the orientation (0y) 72a is detected for each candidate at
step 72, and finally the size 734 of the probe is detected (s) at
step 73.

Each detector is a Probabilistic Boosting Tree (PBT), a
binary classifier. According to an embodiment of the inven-
tion, each detector is trained using Haar-like and steerable
features. A position (u, v) detector according to an embodi-
ment of the invention is trained on manual annotations and
negative examples randomly extracted from the fluoroscopic
image. An exemplary, non-limiting fluoroscopic image is
resized to 128x128 and a 35x35 window is centered at the
annotation. 100,000 Haar features are used to train the PBT.
The appearance of the probe varies greatly and to avoid over
fitting, embodiments create a classifier which is less discrimi-
native but more likely to detect the tip of the probe. During
detection a steerable filter is applied to the image to identify
regions of high contrast which are likely to contain the TEE
probe. This reduces the number of image patches to be clas-
sified by the probe and improves speed.

An orientation (0y) detector according to an embodiment
of'the invention is trained on manually annotated data and the
false positives from the position detector. Additional negative
training data is created centered on the annotation but with
incorrect rotation parameters. A PBT according to an embodi-
ment of the invention can be trained with five features, includ-
ing the relative intensity and the difference between two
steerable filters applied to the image with different param-
eters. An orientation detector according to an embodiment of
the invention is trained at intervals of six degrees with a 360
degree coverage. An orientation detector according to an
embodiment of the invention is more discriminative than the
position detector and therefore can remove outliers as well as
estimating the orientation.

A size (s) detector according to an embodiment of the
invention is trained to detect two points where the tip of the
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probe meets the shaft. This part of the probe is circular and
appears the same size invariant of the pose. A PBT according
to an embodiment of the invention can be trained using Haar
features. During detection the orientation and position of the
probe are used to constrain the search area for the size detec-
tor.

The out-plane parameters are more challenging to esti-
mate. The appearance of the probe under roll and pitch (6r,
Op) varies significantly in the fluoroscopic image and cannot
generally be accounted for in the image space using the same
techniques as used for the in plane parameters, making it
challenging to train a compact classifier. Embodiments of the
invention take a different approach by creating a template
library of fluoroscopic images of the probe under different
out-of-plane orientations (01, Op). Referring again to FIG. 7,
at step 74, the (0r, Op) parameters 74a, 745 are estimated by
matching an image patch, normalized for the in-plane param-
eters, with the template library. Each template has an associ-
ated (Or, Op) and by matching the fluoroscopic image to the
template at step 75 one can estimate the out-of-plane param-
eters as below. The TEE probe can be visualized at step 76.

A template library according to an embodiment of the
invention should contain a wide variety of orientations. It is
not feasible to build this library from in vivo data as it is
challenging to manually annotate (6r, 6p) and the data may
not be comprehensive. Embodiments build a library using
Digitally Reconstructed Radiography (DRR). DRR’s can
simulate X-ray fluoroscopy by tracing light rays through a 3D
volume. For this purpose, a 512x512x433 rotational angiog-
raphy of the TEE probe is acquired with a 0.2225 mm reso-
Iution. The orientation and position of the probe is manually
annotated and (Or, Op) orientations are applied to the volume.
Generating DRR images is computationally expensive and
moving this stage offline saves computation online.

Searching a template library according to an embodiment
of the invention can be computationally expensive. The size
of the library can be limited to reduce the search space. The
probe is not free to move in all directions due to physical
constraints of the tissue. In addition, the X-ray image is an
integral image and is therefore reflective. These two facts can
be exploited by embodiments to reduce the size of the tem-
plate library. According to an embodiment of the invention, a
library was built with pitch poses from -45 to 45 degrees and
roll poses from —90 to 90 degrees with two degree intervals.
The library includes 4050 image patches. These values are
exemplary and non-limiting, and template libraries can be
built over different angular ranges with different angular
intervals in other embodiments of the invention.

This subsample library is still large and expensive to store
and search. To make searching computationally tractable,
embodiments use a binary template representation. Binary
templates are an efficient way of storing information about an
image patch which can be useful for matching. In addition
because the information is stored in binary, matching can be
quickly performed using bitwise operations.

A flowchart of a method according to an embodiment of the
invention of matching an image patch with the image tem-
plates in the template library is presented in FI1G. 22. Refer-
ring now to the figure, the image patch can be divided into
sub-regions at step 221 and features can be extracted from
each region at step 222. The dominant gradient orientation in
each subregion is taken to be a feature, which works well on
homogenous regions and objects which lack texture, as is the
case for a TEE probe in the fluoroscopic image. The orienta-
tions can be discretized into N orientation bins at step 223.
Each sub-region can be represented as an N-bit byte which
corresponds to the N orientation bins. An exemplary, non-
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limiting value for N is 8. At step 224, the bit is set to 1 if the
orientation exists in the sub-region and O if it does not. The
binary template for the image patch is comprised of a set of
bytes corresponding to the sub-regions. The resulting tem-
plate is a compact and discriminative representation of the
image patch.

According to an embodiment of the invention, templates
are matched at step 225 by comparing each sub-region and
counting how many times a feature exists in the template and
the input image. There is no measurement of the similarity of
the features, only that a feature exists in a sub-region. The
similarity measure is

a(Ir 0 o) = Z S(FUIFMr (4 vy + 1) = F(O, 1)), @

where 8(P) is a binary function which returns true if two
features match, F(IF#°"°(u,v)+r) is the input template cen-
tered on candidate (u,v) in image FF**°"° and F(O, r) is a
template from the template library. This function can be
evaluated very quickly using a bitwise AND operation fol-
lowed by a bit count. The final matching score is the bit count
and the (Br, 6p) associated with the highest matching template
is used to estimate the out-of-plane parameters.

According to another embodiment of the invention, a trans-
formation @ between the target structure anatomies T, and A
in an intra-operative image I, and source structure anatomies
T, and A, in a pre-operative image [, can be estimated:

(T)=9(T5,45). 3

FIG. 8 illustrates a fusion formulation according to an
embodiment of the invention, showing the target T, and T,
and anchor A| and A, anatomies. The transformation matrix
@ maps the pre-operative CT image 1, to the intra-operative
3D C-arm CT image I,.

Following the chronology of a typical clinical workflow,
pre-operative structures A, and T, are treated as an input for
the remainder of'this disclosure. According to an embodiment
of the invention, the pericardium is used as the anchor
anatomy A, and A, and the aortic valve is used as the target
anatomy T, and T,. All models are estimated using robust,
discriminative learning based methods, and final model esti-
mations from pre-operative CT images I, are shown in FIG. 8.
The precision of the final surface model for the pericardium is
1.91 mm=0.71 and for the aortic valve is 1.21 mm=0.21.
FIGS. 9(a)-(b) illustrates a model estimation derived from a
pre-operative CT I, using discriminative machine learning
techniques for the aortic valve and pericardium surface
model. FIG. 9(a) shows the aortic valve root, the leaflet tips,
the hinges, the commissure points, and the ostias, while FI1G.
9(b) shows the pericardium surface mesh model.

A method according to an embodiment of the invention can
find an optimal transformation ® that aligns the pre-operative
structures T, and A, to the intra-operative image I :

& - argmaxlog(P(®| I1, A2)). @
>

The target structure T, is not visible in the intra-operative
image, and therefore the transformation ® is determined only
through the anchor structures. Embodiments of the invention
model ® as a rigid transformation with six degrees of free-
dom.
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The initial transformation ®° is approximated as a transla-
tion. A position detector can be trained using a probabilistic
boosting tree classifier and Haar features on the barycenter a,
of'the anchor anatomy A in the intra-operative imageI,. Thus
®° represents the translation between the barycenter a, of the
anchor anatomy A, in the pre-operative image I, and the
detected barycenter a, in the intra-operative image ;.

According to an embodiment of the invention, an expecta-
tion-maximization (EM) framework is used to determine the
final parameters. FIG. 11 illustrates one iteration of an EM
approach according to an embodiment of the invention to
estimate the parameters of the transformation @',

Referring now to FIG. 11, in an expectation stage, given a
current estimate of the global transformation @, K samples
@/ pointsets (xX,, X5, X3, . . ., X, ) are generated at step 111 from
the pre-operative anchor anatomy A,, where each point set
comprises N points and each sample is represented as an
isotropic 6D Gaussian distribution with L, representing the
rigid transformation parameters and X, the uncertainty of the
sample:

D/=Ng(11,Z), 701, )]
where I is the identity matrix and o, is a one dimensional
variable calculated as a kernel function from the probability
map F(I) evaluated at the point locations y, , =1, . . ., K,
=L 0N

Given the current estimate of the transformation ®, the
point sets are transformed at step 112 into the intra-operative
image I;.

yA=0x),i=1, ..., K. 6)

The mapped point sets are updated according to the image
appearance of the intra-operative image I,. Each point y, ;*,
i=1,..., N from the point set x, is assigned a new location Vi
=1, ..., N based on the local image appearance.

According to an embodiment of the invention, to secure a
robust update schema a probability map F(I,) is used, which
is derived from the intra-operative image I, by evaluating a
boosting classifier trained using Haar features. The classifier
can be trained using surface annotations of the anchor
anatomy A, in the intra-operative image. A flowchart of a
method according to an embodiment of the invention of deriv-
ing the probability map F(I,) from the intra-operative image
1, is presented in FIG. 23. Referring now to the figure, each
vertex can be assigned as a positive sample at step 231 and
random points within a threshold distance can be used as
negative samples at step 232. At step 233, those vertices for
which the feature response of the Hessian is low are rejected
as positive examples. The classifier is trained on the remain-
ing samples at step 234. The output of the boosting classifier
response on the intra-operative 3D C-arm CT data F(I))
trained to delineate certain boundary regions of the anchor
anatomy Al (pericardium) is shown in FIG. 10. Uncertain
regions 101 such as the boundary between the pericardium
and the liver have low response while the transition 102 from
the pericardium and the lung have high confidence.

Referring again to FIG. 11, the final parameters of each
sample ®,” are approximated at step 113 by an isotropic Gaus-
sian distribution. The mean pis computed from a least squares
solution between the point set in the pre-operative data (X,
Xs, X3, - - - » Xz) and the updated point set (Y, V2, V35 - - - » Y&)
in the intra-operative image [, by minimizing the mapping
error function e,
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L& @)
e = ﬁz 19D} (x;, ) = i il
=

In a maximization stage, the values of the global transfor-
mation ®° are updated at step 114 based on the estimated
mixture model

of the K transformation samples ®/, i=1, ..., K:

& = argmax(® | D) (8)
()

As there is no analytic solution, embodiments employ a mean
shift algorithm to approximate the solution.

To minimize a mapping error with regard to the target
anatomy T, and T,, embodiments estimate a prior probability
for each mesh point of the pre-operative image models.
According to an embodiment of the invention, this informa-
tion can be incorporated into the expectation phase where
random points can be sampled on the pre-operative anchor
model A,. A flowchart of a method according to an embodi-
ment of the invention of estimating a prior probability for
each mesh point of the pre-operative image models is pre-
sented in FIG. 24. Referring now to the figure, each vertex can
be assigned as a positive sample at step 241 and random
points within a threshold distance can be used as negative
samples at step 242. At step 243, those vertices for which the
feature response of the Hessian is low are rejected as positive
examples. Based on the 3 aortic valve hinges and the 3 aortic
valve commissures, depicted in FIG. 9(a), a ground-truth
mapping @, is estimated at step 245. At step 246, every
intra-operative model of the pre-operative anchor anatomy T,
is transformed to the pre-operative image I, using T,*®,T,
and the variance of the point-wise distance ||T,*-T,||.

FIG. 12 illustrates prior weights indicating the significance
of each vertex for an accurate mapping with respect to the
target anatomy T, the aortic valve. Reference number 121
indicates high probability regions while reference number
122 indicates low probability locations. Most of the signifi-
cant area is located around the left atrium, while the left
ventricle shows low confidence for the location of the aortic
valve. FIG. 12 confirms that certain regions on the anchor
anatomy may better approximate the desired transformation
@ between the target anatomies than others. Points on the left
atrium may align the pre-operative and intra-operative
images with respect to the target anatomy T, and T,, the aortic
valve.

EXPERIMENTS

A method according to an embodiment of the invention for
probe pose detection was validated on synthetic, phantom and
in vivo datasets. Throughout the experiments a GE Linear
TTE Transducer was used. The synthetic dataset includes
4050 simulated fluoroscopy images generated by means of
DRR from a 3D C-arm rotational angiography volume of the
TEE probe, which cover the entire search space of out-plane
parameters. The volume size was 512x512x4330 with 0.2225
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mm per slice. The ground-truth was generated by annotating
the 3D probe position in the rotational angiography volume
and projecting it into the simulated fluoroscopy images. The
phantom dataset includes a rotational angiography volume of
the TEE probe inserted into a silicon phantom, and a total of
51 fluoroscopic images captured by rotating the C-arm and
keeping the TEE probe static. The position of the C-arm is
known from the robotic control, which enabled the ground-
truth to be computed for each fluoroscopic image from a 3D
probe annotation, similar to the synthetic data. The in vivo
dataset was acquired during several porcine studies and
includes 50 fluoroscopic sequences comprising of about
7,000 frames, which cover an extensive range of probe angu-
lations. The pose parameters were manually annotated in all
sequences and corresponding frames, and assumed as
ground-truth for training and testing.

In a first experiment, the quantitative and qualitative per-
formance evaluation of the in-plane parameter (u, v, 0y)
detection was performed on all three datasets. The detector
was trained on 75% of the in vivo dataset (36 sequences of
5,363 frames) and tested on the entire synthetic, phantom and
remaining 25% of'the in vivo dataset. The results are summa-
rized in Table 1, shown in FIG. 13. In the table, the numbers
in parentheses are standard deviations.

For the in vivo data the average in-plane position (u, v)
error was 2.2 and 3.7 mm, respectively, and the in-plane
orientation error was 6.69 degrees. Errors in the position
estimation are caused by false detections along the shaft of the
probe. False position detections contribute to errors in the
orientation estimation. The true positive rate is 0.88 and the
false positive rate is 0.22. The detection and accuracy is
affected by dose level, proximity to dense tissue and back-
ground clutter. For a detection framework according to an
embodiment of the invention, the probe should be clearly
distinguishable from its background. FIGS. 14(a)-(d) illus-
trate detection examples and nature of in vivo images with
cluttered background and low textured probe, as indicated by
the box and arrow 140 in each image.

The results for the phantom and synthetic data are provided
in Table 1 where detection was performed at a fixed scale. The
Fluoro data from the phantom experiment appears different
from the in vivo data used to train the detectors making it
challenging. The true positive rate was 0.95 and false positive
rate 0.05. False detections were caused by the density of the
silicon phantom, which obscures the probe in three images.
The true positive and false positive rates for synthetic data
were 0.99 and 0.01 respectively. The visual appearance of the
synthetic DRR is different from the training data, however the
probe is distinguishable causing high true positive rate.

The out-of-plane (Or, 8p) detectors are analyzed on the
synthetic data to evaluate the accuracy of the binary template
matching. FIG. 15 plots the (Br, Op) error in mm over the
search space in degrees and illustrates stable detection with a
single outlier.

Finally a framework according to an embodiment of the
invention was evaluated with respect to all parameters. Quan-
titative validation was performed on synthetic and phantom
data, as ground truth data for in vivo data was not available.
The results are summarized in Table 2, shown in FIG. 16. In
the table, the numbers in parentheses are standard deviations.
The largest error is in the Z axis, which corresponds to the
optical axis of the Fluoro device. Itis expected that this would
be the largest error because estimating distance along the
optical axis is challenging from a monocular Fluoro image.
Fortunately, the goal ofthe framework is to visualize anatomy
in the Fluoro image, therefore errors in Z has little effect on
the final visualization. Qualitative evaluation is performed on
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in vivo Fluoro images, depicted in FIG. 17, which are Fluoro
images showing the detected pose of the probe, indicated by
the arrows 170.

The computational performance was evaluated for an Intel
2.13 GHz single core with 3.4 GB of RAM. The average
detection time is 0.53 seconds. The computational cost can be
reduced by incorporating temporal information to reduce the
search space.

To illustrate the clinical relevance of a method according to
an embodiment of the invention, an anatomical model of the
mitral valve is detected ina 3D TEE and visualized in Fluoro.
FIG. 18(a) is a Fluoro image of the catheter, FIG. 18(b4)
depicts the mitral detected in 3D TEE, and FIG. 18(c) shows
the valve model visualized in Fluoro. The modalities are not
synchronized and are manually fused. The catheter 180 can
be seen in both modalities.

A further experiment was performed to validate a mapping
@ according to an embodiment of the invention from pre-
operative CT to an intra-operative 3D C-arm CT used 37
patient pairs (74 volumes). According to an embodiment of
the invention, contrasted intra-operative 3D C-arm CT were
used as the aortic valve can be manually annotated and used
for quantitative comparisons. All ground-truth annotations
were obtained by expert users manually placing anatomical
landmarks and the full surface models of the target and anchor
anatomies in the pre- and intra-operative images. The estima-
tion errors can be assessed from Table 111, shown in FIG. 19,
which displays the system precision for the estimation of
target anatomy T,=®(T,). The error is evaluated as the devia-
tion of the transformed target anatomy ®(T,) and the ground-
truth annotation T, ;7. A sparse matching method according
to an embodiment of the invention using a prior sampling
scheme has the best performance. It is more accurate than
standard rigid registration algorithms using a mutual infor-
mation metric, and the transformation ® extracted from the
annotated anchor anatomies A, and A,. The reason may be
that a C-arm CT contains many uncertain regions of the
anchor anatomy without clear contrast at the anatomy border.
Thus, user annotations are not consistent between the two
modalities and produce a larger mapping error than our fully
automated method.

FIG. 20 shows several examples of fused volumes with a
mapped aortic valve model 201 detected in pre-operative CT
I, and mapped into the non-contrasted intra-operative 3D
C-arm CT I, using a sparse matching method with prior
sampling according to an embodiment of the invention. For
clarity, the model outline 201 is indicated in only one of the
images of FIG. 20. The first row shows different volume cuts
with the estimated target T, and anchor A, anatomies. The
middle and bottom rows show the aligned anchor A, and
target T, anatomies. Left image shows an example of 1.86
mm and right 4.03 mm error of the mapped target anatomy
when compared to the ground truth annotation.

System Implementations

It is to be understood that embodiments of the present
invention can be implemented in various forms of hardware,
software, firmware, special purpose processes, or a combina-
tion thereof. In one embodiment, the present invention can be
implemented in software as an application program tangible
embodied on a computer readable program storage device.
The application program can be uploaded to, and executed by,
a machine comprising any suitable architecture.

FIG. 21 is a block diagram of an exemplary computer
system for implementing a system for fusing images for inter-
ventional guidance, according to an embodiment of the inven-
tion. Referring now to FIG. 21, a computer system 211 for
implementing the present invention can comprise, inter alia, a
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central processing unit (CPU) 212, a memory 213 and an
input/output (I/0) interface 214. The computer system 211 is
generally coupled through the I/O interface 214 to a display
215 and various input devices 216 such as a mouse and a
keyboard. The support circuits can include circuits such as
cache, power supplies, clock circuits, and a communication
bus. The memory 213 can include random access memory
(RAM), read only memory (ROM), disk drive, tape drive,
etc., or a combinations thereof. The present invention can be
implemented as a routine 217 that is stored in memory 213
and executed by the CPU 212 to process the signal from the
signal source 218. As such, the computer system 211 is a
general purpose computer system that becomes a specific
purpose computer system when executing the routine 217 of
the present invention.

The computer system 211 also includes an operating sys-
tem and micro instruction code. The various processes and
functions described herein can either be part of the micro
instruction code or part of the application program (or com-
bination thereof) which is executed via the operating system.
Inaddition, various other peripheral devices can be connected
to the computer platform such as an additional data storage
device and a printing device.

It is to be further understood that, because some of the
constituent system components and method steps depicted in
the accompanying figures can be implemented in software,
the actual connections between the systems components (or
the process steps) may differ depending upon the manner in
which the present invention is programmed. Given the teach-
ings of the present invention provided herein, one of ordinary
skill in the related art will be able to contemplate these and
similar implementations or configurations of the present
invention.

While the present invention has been described in detail
with reference to exemplary embodiments, those skilled in
the art will appreciate that various modifications and substi-
tutions can be made thereto without departing from the spirit
and scope of the invention as set forth in the appended claims.

What is claimed is:

1. A method for real-time fusion of a 2D cardiac ultrasound
image with a 2D cardiac fluoroscopic image, comprising the
steps of:

detecting a surface contour of an aortic valve in the 2D

cardiac ultrasound (US) image relative to an US probe;
detecting a pose of the US probe in the 2D cardiac fluoro-
scopic image; and

using pose parameters of the US probe to transform the

surface contour of the aortic valve from the 2D cardiac

US image to the 2D cardiac fluoroscopic image,

wherein detecting the surface contour of the aortic valve

comprises:

modeling a global location of the aortic valve by a
bounding box with a specified center and orientation,
wherein said global location includes a center posi-
tion, an orientation and a scale of the aortic valve;

locating anatomical landmarks of the aortic valve,
including 2 landmarks on the aortic valve annulus and
2 landmarks on the aortic valve commissure plane;
and

modeling the aortic valve borders with a first contour
and a second contour, said first and seconds contours
being constrained by the aortic valve annulus land-
marks and the aortic valve commissure plane land-
marks.

2. The method of claim 1, further comprising detecting said
global location, anatomical landmarks, and first and second
contours are using marginal space learning with a hierarchi-
cal approach, wherein detectors are successively trained
using probabilistic boosting trees.
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3. A method for real-time fusion of a 2D cardiac ultrasound
image with a 2D cardiac fluoroscopic image, comprising the
steps of:

detecting a surface contour of an aortic valve in the 2D

cardiac ultrasound (US) image relative to an US probe;
detecting a pose of the US probe in the 2D cardiac fluoro-
scopic image;
using pose parameters of the US probe to transform the
surface contour of the aortic valve from the 2D cardiac
US image to the 2D cardiac fluoroscopic image, and

finding an optimal imaging angle for the US probe by
rotating the US probe about its axis, and detecting an
angulation of an US fan with respect to the aortic root,
and selecting a probe orientation that maximizes the
angulation of the US fan with respect to the aortic root as
the optimal imaging angle.

4. The method of claim 3, further comprising inserting the
US image into the fluoroscopic image.

5. A method for real-time fusion of a 2D cardiac ultrasound
image with a 2D cardiac fluoroscopic image, comprising the
steps of:

detecting a surface contour of an aortic valve in the 2D

cardiac ultrasound (US) image relative to an US probe;
detecting a pose of the US probe in the 2D cardiac fluoro-
scopic image; and

using pose parameters of the US probe to transform the

surface contour of the aortic valve from the 2D cardiac

US image to the 2D cardiac fluoroscopic image,

wherein detecting a pose of the US probe in the 2D cardiac

fluoroscopic image comprises:

determining a position (u,v), orientation (8y), and size
(s) of an ultrasound (US) probe in a fluoroscopic
image;

determining a roll and pitch of the US probe in the
fluoroscopic image, wherein the position, orientation,
size, roll and pitch comprise pose parameters of the
probe; and

using said probe pose parameters to transform points in
said 2D cardiac ultrasound image into said 2D cardiac
fluoroscopic image, wherein said 2D cardiac ultra-
sound image is visualized in said 2D cardiac fluoro-
scopic image.

6. The method of claim 5, wherein determining the posi-
tion, orientation, and size of the US probe in the fluoroscopic
image comprises sequentially applying a classifier for each of
the position, orientation, and size, respectively, wherein each
classifier is trained using a probabilistic boosting tree.

7. The method of claim 6, wherein each of said classifiers
is trained using Haar-like features.

8. The method of claim 6, wherein determining the position
of'the US probe comprises applying a steerable filter to the 2D
fluoroscopic image to identify regions of high contrast which
are likely to contain the US probe.

9. The method of claim 6, wherein determining the size of
the US probe comprises detecting two points where a tip of
the probe meets a shaft of the probe, wherein the orientation
and position of the US probe are used to constrain a search
area for the size detector.

10. The method of claim 5, wherein determining the roll
and pitch of'the US probe in the fluoroscopic image comprises
matching an image patch of said fluoroscopic image contain-
ing said US probe with each of a plurality of image templates,
wherein each image template is associated with a particular
combination of roll and pitch values, wherein the pitch and
roll of a template that best matches the image patch are
selected as the roll and pitch of the US probe.
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